(Nanowerk Spotlight) Neural engineering is an emerging discipline that uses engineering techniques to investigate the function and manipulate the behavior of the central or peripheral nervous systems. Neural engineering is highly interdisciplinary and relies on expertise from computational neuroscience, experimental neuroscience, clinical neurology, electrical engineering and signal processing of living neural tissue, and encompasses elements from robotics, computer engineering, neural tissue engineering, materials science, and nanotechnology.
In order for neural prostheses to augment or restore damaged or lost functions of the nervous system they need to be able to perform two main functions: stimulate the nervous system and record its activity. To do that, neural engineers have to gain a full understanding of the fundamental mechanisms and subtleties of cell-to-cell signaling via synaptic transmission, and then develop the technologies to replicate these mechanisms with artificial devices and interface them to the neural system at the cellular level. A group of European researchers has now shown that carbon nanotubes may become the ideal material for repairing damaged brain tissue.
"Our findings show that carbon nanotubes, which, like the nervous cells of our brain, are excellent electrical signal conductors and form intimate mechanical contacts with cellular membranes, thereby establishing a functional link to neuronal structures," Laura Ballerini, a professor of physiology, together with Maurizio Prato, professor of organic chemistry, both at the University of Trieste, Italy, explain to Nanowerk. "Such a functional and mechanical link might favor electrical shortcuts between the proximal and distal compartments of the neuron, therefore improving neuronal performance.
" The study was conducted in Prato's and Ballerini's laboratories at the University of Trieste, Italy, in collaboration with Henry Markram's Laboratory of Neural Microcircuitry at Ecole Polytechnique Federale de Lausanne (EPFL) in Switzerland, and Michel Giugliano (now an assistant professor at the University of Antwerp). The team has published their findings in the December 21, 2008 online edition of Nature Nanotechnology ("Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts"). These findings represent one of the earliest attempts at linking electrical phenomena in nanomaterials to neuronal excitability.
For their experiments, the team deposited single-wall or multi-wall carbon nanotubes on a glass substrate and subsequently defunctionalized them by thermal treatment to form glass slides covered with a purified and mechanically stable thin film of about 50-70 nm thickness. This dense network of nanotubes acts as a largely resistive network that permits long-range electrical connectivity. The effect of nanotubes on neuronal integrative properties was then investigated by comparing the electrophysiology of rat hippocampal cells cultured on control substrates to those grown on a thin film of purified nanotubes for 8 to 12 days.
Read more: Nanotechnology to repair the brain
In order for neural prostheses to augment or restore damaged or lost functions of the nervous system they need to be able to perform two main functions: stimulate the nervous system and record its activity. To do that, neural engineers have to gain a full understanding of the fundamental mechanisms and subtleties of cell-to-cell signaling via synaptic transmission, and then develop the technologies to replicate these mechanisms with artificial devices and interface them to the neural system at the cellular level. A group of European researchers has now shown that carbon nanotubes may become the ideal material for repairing damaged brain tissue.
"Our findings show that carbon nanotubes, which, like the nervous cells of our brain, are excellent electrical signal conductors and form intimate mechanical contacts with cellular membranes, thereby establishing a functional link to neuronal structures," Laura Ballerini, a professor of physiology, together with Maurizio Prato, professor of organic chemistry, both at the University of Trieste, Italy, explain to Nanowerk. "Such a functional and mechanical link might favor electrical shortcuts between the proximal and distal compartments of the neuron, therefore improving neuronal performance.
" The study was conducted in Prato's and Ballerini's laboratories at the University of Trieste, Italy, in collaboration with Henry Markram's Laboratory of Neural Microcircuitry at Ecole Polytechnique Federale de Lausanne (EPFL) in Switzerland, and Michel Giugliano (now an assistant professor at the University of Antwerp). The team has published their findings in the December 21, 2008 online edition of Nature Nanotechnology ("Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts"). These findings represent one of the earliest attempts at linking electrical phenomena in nanomaterials to neuronal excitability.
For their experiments, the team deposited single-wall or multi-wall carbon nanotubes on a glass substrate and subsequently defunctionalized them by thermal treatment to form glass slides covered with a purified and mechanically stable thin film of about 50-70 nm thickness. This dense network of nanotubes acts as a largely resistive network that permits long-range electrical connectivity. The effect of nanotubes on neuronal integrative properties was then investigated by comparing the electrophysiology of rat hippocampal cells cultured on control substrates to those grown on a thin film of purified nanotubes for 8 to 12 days.
Read more: Nanotechnology to repair the brain