The Berkeley-led team will attempt to build a time crystal by injecting 100 calcium ions into a small chamber surrounded by electrodes. The electric field generated by the electrodes will corral the ions in a “trap” 100 microns wide, or roughly the width of a human hair. The scientists must precisely calibrate the electrodes to smooth out the field. Because like charges repel, the ions will space themselves evenly around the outer edge of the trap, forming a crystalline ring.
At first, the ions will vibrate in an excited state, but diode lasers like those found in DVD players will be used to gradually scatter away their extra kinetic energy. According to the group’s calculations, the ion ring should settle into its ground state when the ions are laser-cooled to around one-billionth of a degree above absolute zero. Access to this temperature regime had long been obstructed by background heat emanating from trap electrodes, but in September, a breakthrough technique for cleaning surface contaminants off electrodes enabled a 100-fold reduction in ion trap background heat. “That’s exactly the factor we need to bring this experiment into reach,” Häffner said.
Next, the researchers will switch on a static magnetic field in the trap, which their theory says should induce the ions to start rotating (and continue doing so indefinitely). If all goes as planned, the ions will cycle around to their starting point at fixed intervals, forming a regularly repeating lattice in time that breaks temporal symmetry.
'Time Crystals' Could Upend Physicists' Theory of Time | Wired Science | Wired.com
What clever monkeys we are