Front Hum Neurosci. 2013; 7: 611.
Published online 2013 Sep 30. Prepublished online 2013 Jun 25. doi: 10.3389/fnhum.2013.00611
PMCID: PMC3786226
The embodied transcendental: a Kantian perspective on neurophenomenology
Omar T. Khachouf,1,* Stefano Poletti,2 and Giuseppe Pagnoni1
1Department of Neural, Biomedical, and Metabolic Sciences, University of Modena and Reggio Emilia, Modena, Italy
2Department of Applied Cognitive Psychology, University of Bologna, Bologna, Italy
Edited by: Wendy Hasenkamp, Mind and Life Institute, USA
Reviewed by: Antoine Lutz, Waisman Lab for Brain Imaging and Behavior, USA; Rajesh Kasturirangan, National Institute of Advanced Studies, India
This article has been cited by other articles in PMC.
Abstract: Neurophenomenology is a research programme aimed at bridging the explanatory gap between first-person subjective experience and neurophysiological third-person data, through an embodied and enactive approach to the biology of consciousness. The present proposal attempts to further characterize the bodily basis of the mind by adopting a naturalistic view of the phenomenological concept of intentionality as the a priori invariant character of any lived experience. Building on the Kantian definition of transcendentality as “what concerns the a priori formal structures of the subject's mind” and as a precondition for the very possibility of human knowledge, we will suggest that this transcendental core may in fact be rooted in biology and can be examined within an extension of the theory of autopoiesis. The argument will be first clarified by examining its application to previously proposed elementary autopoietic models, to the bacterium, and to the immune system; it will be then further substantiated and illustrated by examining the mirror-neuron system and the default mode network as biological instances exemplifying the enactive nature of knowledge, and by discussing the phenomenological aspects of selected neurological conditions (neglect, schizophrenia). In this context, the free-energy principle proposed recently by Karl Friston will be briefly introduced as a rigorous, neurally-plausible framework that seems to accomodate optimally these ideas. While our approach is biologically-inspired, we will maintain that lived first-person experience is still critical for a better understanding of brain function, based on our argument that the former and the latter share the same transcendental structure. Finally, the role that disciplined contemplative practices can play to this aim, and an interpretation of the cognitive processes taking place during meditation under this perspective, will be also discussed.
Keywords: neurophenomenology, Kant, a priori, prereflective awareness, default mode network, ongoing activity, free-energy, meditation
Introduction
Neurophenomenology, a programmatic endeavour to integrate the basic principles of Edmund Husserl's phenomenology with the findings of cognitive neuroscience, was originally proposed within the theoretical framework of autopoiesis and enactive cognition (Maturana and Varela, 1980; Varela et al., 1991) as “a methodological remedy for the hard problem” (Varela, 1996). While its aim of bridging the explanatory gap between first-person witnessing of life and third-person scientific accounts of experience has yet to be fulfilled, there is currently a renewed interest not only in better defining the theoretical project itself, but also in identifying a pragmatic implementation of the neurophenomenological method (Lutz, 2002; Lutz et al., 2002; Lutz and Thompson, 2003; Cosmelli et al., 2004; Thompson, 2007).
Within the dialectic field spanned by the first- and third-person epistemological poles, many phenomenology-oriented authors have recently argued for at least a methodological, if not an ontological primacy of consciousness over its neuroscientific correlates (Wallace, 2000; Bitbol, 2008). Bitbol (2008), in particular, uses a number of arguments from epistemology, phenomenology, neuropsychology, and physics to demonstrate the inconsistency of a reductionist approach to consciousness, where mental states are ontologically dependent on physical states; neurophenomenology is then viewed as a novel scientific method building on a corpus of intersubjectively-invariant first-person reports that may broaden the horizon of objective science.
In this paper, we would like to take a closer look at and build on one of the key features of the enactive approach, namely the natural roots of intentionality, a phenomenological notion indicating that experience is always “about something” (Thompson, 2007, p. 27, pp. 157–162). To this aim, we will argue that for the environment to become meaningful for an organism, the latter must be endowed with a hierarchical set of a priori (albeit malleable) structures that somehow mirror selected aspects of it—in line with Kant's notion of transcendental. Since the transcendental is also at the very basis of phenomenology, we hope that underscoring its embodied roots can provide a useful inspiration for future interdisciplinary research into the mind-brain problem.
This article is structured as follows. After introducing the philosophical background to our thesis (Section 1), we will discuss a naturalized account of intentionality, whereby the transcendental is interpreted as the defining character of autopoietic agents (Section 2); the bacterium and the immune system will be used as elementary examples of embodied transcendentality. In Section 3, we will propose that the activity of selected neural networks in the human brain can be interpreted as displaying the functionality of the transcendental structure at multiple levels, suggesting potential implications for clinical conditions; the free-energy principle proposed by Karl Friston (Friston and Stephan, 2007) will be introduced as a neurobiologically-plausible theoretical framework that seems particularly fitting for the ideas presented here. We will conclude (Section 4) with some considerations on the role that contemplative practices may play in neurophenomenology. Figure Figure11 illustrates synoptically the relationships among the themes discussed in the present paper.
Figure 1
A schematic depiction of the articulation of the main themes of the article. The brain pictures are toy-representations of the default mode network (red stars) and the putative human analog of the mirror-neuron circuit (green stars). On the lower left ...
1. The transcendental in philosophy
We will begin by introducing a few fundamental concepts from Husserl's philosophy (Husserl, 1960, 1970), with an emphasis on their Kantian roots, in order to characterize the role of the transcendental in our own proposal.
Husserl's transcendental phenomenology
Husserl refuses to accept what he calls “the natural attitude,” the naive and non-reflexive everyday consciousness of the world leading to the common belief that reality as it appears exists in itself, that is, has an ontological value. Husserl's operation, called epoché, consists in the attempt of “bracketing out” unexamined preconceptions from statements about reality (including those on which natural science relies), and finds the manifestation of consciousness itself as the only residual of this rigorous examination. This gnoseological praxis led Husserl to the characterization of subjectivity as transcendental, a term denoting the a priori1 determination of the form and quality of experience. According to Husserl, the fundamental character of experience does not consist in its phenomenal content, but rather in the pre-given “horizon” (a term with a deliberate connotation of “illusory” or “apparent”) that is the condition for the perception of each object or phenomenon: this background primary consciousness is what enables the transcendentally-constructed world.
Intentionality and prereflective awareness
We will use the term “intentionality” here to indicate the mind's innate tension toward its object, a definition underscoring the relationship between act and content of experience. Mental acts or processes (e.g., focusing one's attention, recalling memories, experiencing surprise to unexpected events, etc.) are referred to by Husserl as noesis; mental contents, such as objects of perception, thought, memory, imagery, emotion and so on, are called noema. In order to understand the forthcoming sections, it is useful to see noesis as an a priori dimension of experience, and noema as an a posteriori, although such distinction may not correspond exactly to Husserl's original position. Moreover—since to see an object is indissolubly tied to the subjective experience of seeing, to recall a memory cannot be separated from the subjective quality of recalling, and so on—intentionality is coessential with prereflective self-awareness (Lutz and Thompson, 2003), the self-manifesting awareness of experience that does not require a voluntary act of introspection or reflection (Depraz et al., 2000; Zahavi, 2003). Prereflective self-awareness is considered by a long philosophical tradition as the very mode of experience (“any conscious existence exists qua conscious of existing,” Sartre, 1943; Zahavi, 2003), and there has been recently a keen interest in the search for its bodily roots (Wider, 1997; Zahavi, 2002). Notably, prereflective self-awareness can be seen as the most basic form of noesis, i.e., the fundamental a priori form within whose limits all experience arises. It is in this sense that we can view intentionality as a manifestation of the transcendental: to use a metaphor, it can be likened to the founding act of the fisherman casting his net out into the sea to begin his catch; without this initial lighting up of consciousness, which embeds an essential predictive component, nothing could be perceived at all.
It is important to distinguish this notion of intentionality from its functionalist-cognitivist acceptation (Fodor, 1975), the latter indicating the semantic link between a mental representation and its object in the external world that often assumes a one-to-one mapping. Concerning the validity of this assumption, it is useful to briefly recall here Freeman and Skarda (1990)'s argument about the widespread use of the notion of representation in cognitive science. In a cogent critique, the authors point to a consistent body of experimental evidence that the search for specific EEG patterns coding for different olfactory stimuli had been misleading: odor-specific neural activity in the olfactory bulb is in fact more influenced by the ongoing neural, behavioral, and environmental context than by the sheer physical characteristics of the external stimuli (Freeman and Skarda, 1985), a finding that is difficult to reconcile with a purely representationalist view of cognition.
The a priori determination of knowledge: Kant's legacy
Before delving further into the matter, we would like to consider briefly the Kantian legacy in phenomenology. Kant aimed at providing a theoretical justification for the objectiveness of the newborn Galileian-Newtonian physics. The 18th century debate about the legitimacy of a mathematical formalization of nature, i.e., about whether nature could conform to a merely-human logic, led the skeptic philosophers (Hume, Berkeley) to claim that the only value that can be attributed to science is practical and nothing can be stated about its connection with reality. In order to overcome such impasse, Kant proposed a revolutionary (albeit influenced by Aristotle) reconceptualization of the process of human knowledge, which he illustrated in his Critique of Pure Reason.
Kant begins by examining perceptions (called “sensory intuitions”) as the result of the encounter between the external world and the subject's senses, where every perception is necessarily framed within a specific space and time. However, the categories of space and time are now considered neither absolute and objective, i.e., existing in the world (as Newton held), nor totally subjective and existentially private (as Leibnitz claimed). Space and time are for the first time defined as “transcendental,” that is, formal and empty a priori structures of the subject. The external world can be sensorily perceived only inasmuch as it “fits” such predetermined forms. The thus obtained sensory intuition is then passed onto a higher level of cognitive elaboration where a different and more abstract set of categories (including quantity, quality, reciprocity, cause-effect, etc.) mediates the production of scientific claims—propositions that are by definition true both per se and intersubjectively. But how can the link between these intellectual categories and the outer world—and therefore the objectivity of science—be guaranteed? Intellectual categories must be transcendental forms as well, which thanks to a direct connection to the empirical senses via the basic space and time categories, can predetermine the kind of external material that can be sensorily perceived. To put it succintly, we can only perceive what we can elaborate into concepts.
The Critique of Pure Reason indeed overturns the relationship between knowing subject and experienced object, arguing that the properties that we can assign to the object are nothing but the very preconditions for knowing the object itself: we do not know the object per se, and our world is populated by objects only inasmuch as they fit our predetermined sensory and intellective apparatus2. It is not difficult to extend such notion to living beings in general, within the perspective of enactive cognition: each organism brings forth a predetermined (but malleable) structure to face the world, thus creating its own umwelt or “inner world” (Uexkull, 2010). To use a common illustration, a bacterium sensible to three chemicals (e.g., sucrose, lactose and an isomer of lactose) lives in a world whose cardinal features consist only of these three objects fitting the bacterium's predetermined sensory apparatus (receptors and metabolic networks): the rest of the physicochemical world for the bacterium is the “the object per se,” i.e., Kant's noumenon, which is utterly opaque to cognition. From such a point of view, the transcendental can in fact be appreciated as the very mode of both subjectivity and life.
Go to:
2. Embodying the transcendental
A number of different nuances about the notion of autopoiesis were highlighted already in Varela et al. (1974); Maturana and Varela (1980). A simple yet precise definition, taken from Varela's later writings and adopted by Thompson (2007) as a cornerstone for his argument, is that a system can be considered autopoietic if 1) it consists of a network of chemical reactions which regenerate at least some of the components of the system, 2) the system has a semipermeable boundary, and 3) this boundary is the result of reactions taking place necessarily within the boundary. The term “operational closure” is used in Varela et al. (1991) to indicate the intrinsically recursive nature of the reactions the system consists of. Since such a system is immersed in the environment it generated from and continually exchanges energy and matter with it, the identity singled out by the autocatalytic production3 of the system's membrane is far from representing a disconnection from the external world. Indeed, its identity emerges from bringing forth selected relations with the environment, such as the intake of external chemicals that will take part in the system's reactions: these chemicals become nutrients, acquiring that “surplus of significance” that points to the difference between external environment and world under the organism's perspective (Varela et al., 1991; Varela, 1997). Operational closure and the environment-linked thermodynamic openness of autopoietic systems can be described as a continuous change within a struggle for the re-affirmation of an invariant form. Such relationship between autopoietic agents and the environment (enaction) is what characterizes, in Varela and Maturana's view, the minimal form of cognition, as synthesized by the formula “living is sense-making” (Varela et al., 1991).
Our contribution to this view focuses on the examination of what enables the organism to make sense of the environment (however unconsciously). We propose that an embodied analog of Kant's a priori structures may be at work. This change of accent, within the same perspective, is based on an extension of the notion of the Kantian transcendental consisting in rooting an a priori formal structure at the biological level. We acknowledge here a strong affinity with Thompson (2004), who links intentionality as a self-organizing openness to the world with biology, arguing that autopoiesis is “the minimal form this type of self-organization can take” (Thompson, 2007, pp. 157–165). This sentence contains indeed, in a nutshell, a formulation of an embodiment of the transcendental similar to ours, with an explicit reference to dynamic systems theory (Thompson, 2007, p. 27). However, Thompson's claim that experience is “irreducible” due to its “ineliminable transcendental character”(Thompson, 2004) seems to favor a usage of the transcendental in a purely-phenomenological way: the transcendental is our own lived experience, which alone renders an epistemology of living organisms possible (Thompson, 2007, pp. 162–165). Our analysis of the autopoietic analogs of Kantian categories, on the other hand, aspires to trace the “ineliminable transcendental character” of phenomenology within biology (and the brain) itself. In order to clarify this important point, we discuss briefly some relevant issues highlighted by Thompson (2007).
Autopoiesis, life, and cognition: one and the same? . . . ."
The embodied transcendental: a Kantian perspective on neurophenomenology
Published online 2013 Sep 30. Prepublished online 2013 Jun 25. doi: 10.3389/fnhum.2013.00611
PMCID: PMC3786226
The embodied transcendental: a Kantian perspective on neurophenomenology
Omar T. Khachouf,1,* Stefano Poletti,2 and Giuseppe Pagnoni1
1Department of Neural, Biomedical, and Metabolic Sciences, University of Modena and Reggio Emilia, Modena, Italy
2Department of Applied Cognitive Psychology, University of Bologna, Bologna, Italy
Edited by: Wendy Hasenkamp, Mind and Life Institute, USA
Reviewed by: Antoine Lutz, Waisman Lab for Brain Imaging and Behavior, USA; Rajesh Kasturirangan, National Institute of Advanced Studies, India
This article has been cited by other articles in PMC.
Abstract: Neurophenomenology is a research programme aimed at bridging the explanatory gap between first-person subjective experience and neurophysiological third-person data, through an embodied and enactive approach to the biology of consciousness. The present proposal attempts to further characterize the bodily basis of the mind by adopting a naturalistic view of the phenomenological concept of intentionality as the a priori invariant character of any lived experience. Building on the Kantian definition of transcendentality as “what concerns the a priori formal structures of the subject's mind” and as a precondition for the very possibility of human knowledge, we will suggest that this transcendental core may in fact be rooted in biology and can be examined within an extension of the theory of autopoiesis. The argument will be first clarified by examining its application to previously proposed elementary autopoietic models, to the bacterium, and to the immune system; it will be then further substantiated and illustrated by examining the mirror-neuron system and the default mode network as biological instances exemplifying the enactive nature of knowledge, and by discussing the phenomenological aspects of selected neurological conditions (neglect, schizophrenia). In this context, the free-energy principle proposed recently by Karl Friston will be briefly introduced as a rigorous, neurally-plausible framework that seems to accomodate optimally these ideas. While our approach is biologically-inspired, we will maintain that lived first-person experience is still critical for a better understanding of brain function, based on our argument that the former and the latter share the same transcendental structure. Finally, the role that disciplined contemplative practices can play to this aim, and an interpretation of the cognitive processes taking place during meditation under this perspective, will be also discussed.
Keywords: neurophenomenology, Kant, a priori, prereflective awareness, default mode network, ongoing activity, free-energy, meditation
Introduction
Neurophenomenology, a programmatic endeavour to integrate the basic principles of Edmund Husserl's phenomenology with the findings of cognitive neuroscience, was originally proposed within the theoretical framework of autopoiesis and enactive cognition (Maturana and Varela, 1980; Varela et al., 1991) as “a methodological remedy for the hard problem” (Varela, 1996). While its aim of bridging the explanatory gap between first-person witnessing of life and third-person scientific accounts of experience has yet to be fulfilled, there is currently a renewed interest not only in better defining the theoretical project itself, but also in identifying a pragmatic implementation of the neurophenomenological method (Lutz, 2002; Lutz et al., 2002; Lutz and Thompson, 2003; Cosmelli et al., 2004; Thompson, 2007).
Within the dialectic field spanned by the first- and third-person epistemological poles, many phenomenology-oriented authors have recently argued for at least a methodological, if not an ontological primacy of consciousness over its neuroscientific correlates (Wallace, 2000; Bitbol, 2008). Bitbol (2008), in particular, uses a number of arguments from epistemology, phenomenology, neuropsychology, and physics to demonstrate the inconsistency of a reductionist approach to consciousness, where mental states are ontologically dependent on physical states; neurophenomenology is then viewed as a novel scientific method building on a corpus of intersubjectively-invariant first-person reports that may broaden the horizon of objective science.
In this paper, we would like to take a closer look at and build on one of the key features of the enactive approach, namely the natural roots of intentionality, a phenomenological notion indicating that experience is always “about something” (Thompson, 2007, p. 27, pp. 157–162). To this aim, we will argue that for the environment to become meaningful for an organism, the latter must be endowed with a hierarchical set of a priori (albeit malleable) structures that somehow mirror selected aspects of it—in line with Kant's notion of transcendental. Since the transcendental is also at the very basis of phenomenology, we hope that underscoring its embodied roots can provide a useful inspiration for future interdisciplinary research into the mind-brain problem.
This article is structured as follows. After introducing the philosophical background to our thesis (Section 1), we will discuss a naturalized account of intentionality, whereby the transcendental is interpreted as the defining character of autopoietic agents (Section 2); the bacterium and the immune system will be used as elementary examples of embodied transcendentality. In Section 3, we will propose that the activity of selected neural networks in the human brain can be interpreted as displaying the functionality of the transcendental structure at multiple levels, suggesting potential implications for clinical conditions; the free-energy principle proposed by Karl Friston (Friston and Stephan, 2007) will be introduced as a neurobiologically-plausible theoretical framework that seems particularly fitting for the ideas presented here. We will conclude (Section 4) with some considerations on the role that contemplative practices may play in neurophenomenology. Figure Figure11 illustrates synoptically the relationships among the themes discussed in the present paper.
Figure 1
A schematic depiction of the articulation of the main themes of the article. The brain pictures are toy-representations of the default mode network (red stars) and the putative human analog of the mirror-neuron circuit (green stars). On the lower left ...
1. The transcendental in philosophy
We will begin by introducing a few fundamental concepts from Husserl's philosophy (Husserl, 1960, 1970), with an emphasis on their Kantian roots, in order to characterize the role of the transcendental in our own proposal.
Husserl's transcendental phenomenology
Husserl refuses to accept what he calls “the natural attitude,” the naive and non-reflexive everyday consciousness of the world leading to the common belief that reality as it appears exists in itself, that is, has an ontological value. Husserl's operation, called epoché, consists in the attempt of “bracketing out” unexamined preconceptions from statements about reality (including those on which natural science relies), and finds the manifestation of consciousness itself as the only residual of this rigorous examination. This gnoseological praxis led Husserl to the characterization of subjectivity as transcendental, a term denoting the a priori1 determination of the form and quality of experience. According to Husserl, the fundamental character of experience does not consist in its phenomenal content, but rather in the pre-given “horizon” (a term with a deliberate connotation of “illusory” or “apparent”) that is the condition for the perception of each object or phenomenon: this background primary consciousness is what enables the transcendentally-constructed world.
Intentionality and prereflective awareness
We will use the term “intentionality” here to indicate the mind's innate tension toward its object, a definition underscoring the relationship between act and content of experience. Mental acts or processes (e.g., focusing one's attention, recalling memories, experiencing surprise to unexpected events, etc.) are referred to by Husserl as noesis; mental contents, such as objects of perception, thought, memory, imagery, emotion and so on, are called noema. In order to understand the forthcoming sections, it is useful to see noesis as an a priori dimension of experience, and noema as an a posteriori, although such distinction may not correspond exactly to Husserl's original position. Moreover—since to see an object is indissolubly tied to the subjective experience of seeing, to recall a memory cannot be separated from the subjective quality of recalling, and so on—intentionality is coessential with prereflective self-awareness (Lutz and Thompson, 2003), the self-manifesting awareness of experience that does not require a voluntary act of introspection or reflection (Depraz et al., 2000; Zahavi, 2003). Prereflective self-awareness is considered by a long philosophical tradition as the very mode of experience (“any conscious existence exists qua conscious of existing,” Sartre, 1943; Zahavi, 2003), and there has been recently a keen interest in the search for its bodily roots (Wider, 1997; Zahavi, 2002). Notably, prereflective self-awareness can be seen as the most basic form of noesis, i.e., the fundamental a priori form within whose limits all experience arises. It is in this sense that we can view intentionality as a manifestation of the transcendental: to use a metaphor, it can be likened to the founding act of the fisherman casting his net out into the sea to begin his catch; without this initial lighting up of consciousness, which embeds an essential predictive component, nothing could be perceived at all.
It is important to distinguish this notion of intentionality from its functionalist-cognitivist acceptation (Fodor, 1975), the latter indicating the semantic link between a mental representation and its object in the external world that often assumes a one-to-one mapping. Concerning the validity of this assumption, it is useful to briefly recall here Freeman and Skarda (1990)'s argument about the widespread use of the notion of representation in cognitive science. In a cogent critique, the authors point to a consistent body of experimental evidence that the search for specific EEG patterns coding for different olfactory stimuli had been misleading: odor-specific neural activity in the olfactory bulb is in fact more influenced by the ongoing neural, behavioral, and environmental context than by the sheer physical characteristics of the external stimuli (Freeman and Skarda, 1985), a finding that is difficult to reconcile with a purely representationalist view of cognition.
The a priori determination of knowledge: Kant's legacy
Before delving further into the matter, we would like to consider briefly the Kantian legacy in phenomenology. Kant aimed at providing a theoretical justification for the objectiveness of the newborn Galileian-Newtonian physics. The 18th century debate about the legitimacy of a mathematical formalization of nature, i.e., about whether nature could conform to a merely-human logic, led the skeptic philosophers (Hume, Berkeley) to claim that the only value that can be attributed to science is practical and nothing can be stated about its connection with reality. In order to overcome such impasse, Kant proposed a revolutionary (albeit influenced by Aristotle) reconceptualization of the process of human knowledge, which he illustrated in his Critique of Pure Reason.
Kant begins by examining perceptions (called “sensory intuitions”) as the result of the encounter between the external world and the subject's senses, where every perception is necessarily framed within a specific space and time. However, the categories of space and time are now considered neither absolute and objective, i.e., existing in the world (as Newton held), nor totally subjective and existentially private (as Leibnitz claimed). Space and time are for the first time defined as “transcendental,” that is, formal and empty a priori structures of the subject. The external world can be sensorily perceived only inasmuch as it “fits” such predetermined forms. The thus obtained sensory intuition is then passed onto a higher level of cognitive elaboration where a different and more abstract set of categories (including quantity, quality, reciprocity, cause-effect, etc.) mediates the production of scientific claims—propositions that are by definition true both per se and intersubjectively. But how can the link between these intellectual categories and the outer world—and therefore the objectivity of science—be guaranteed? Intellectual categories must be transcendental forms as well, which thanks to a direct connection to the empirical senses via the basic space and time categories, can predetermine the kind of external material that can be sensorily perceived. To put it succintly, we can only perceive what we can elaborate into concepts.
The Critique of Pure Reason indeed overturns the relationship between knowing subject and experienced object, arguing that the properties that we can assign to the object are nothing but the very preconditions for knowing the object itself: we do not know the object per se, and our world is populated by objects only inasmuch as they fit our predetermined sensory and intellective apparatus2. It is not difficult to extend such notion to living beings in general, within the perspective of enactive cognition: each organism brings forth a predetermined (but malleable) structure to face the world, thus creating its own umwelt or “inner world” (Uexkull, 2010). To use a common illustration, a bacterium sensible to three chemicals (e.g., sucrose, lactose and an isomer of lactose) lives in a world whose cardinal features consist only of these three objects fitting the bacterium's predetermined sensory apparatus (receptors and metabolic networks): the rest of the physicochemical world for the bacterium is the “the object per se,” i.e., Kant's noumenon, which is utterly opaque to cognition. From such a point of view, the transcendental can in fact be appreciated as the very mode of both subjectivity and life.
Go to:
2. Embodying the transcendental
A number of different nuances about the notion of autopoiesis were highlighted already in Varela et al. (1974); Maturana and Varela (1980). A simple yet precise definition, taken from Varela's later writings and adopted by Thompson (2007) as a cornerstone for his argument, is that a system can be considered autopoietic if 1) it consists of a network of chemical reactions which regenerate at least some of the components of the system, 2) the system has a semipermeable boundary, and 3) this boundary is the result of reactions taking place necessarily within the boundary. The term “operational closure” is used in Varela et al. (1991) to indicate the intrinsically recursive nature of the reactions the system consists of. Since such a system is immersed in the environment it generated from and continually exchanges energy and matter with it, the identity singled out by the autocatalytic production3 of the system's membrane is far from representing a disconnection from the external world. Indeed, its identity emerges from bringing forth selected relations with the environment, such as the intake of external chemicals that will take part in the system's reactions: these chemicals become nutrients, acquiring that “surplus of significance” that points to the difference between external environment and world under the organism's perspective (Varela et al., 1991; Varela, 1997). Operational closure and the environment-linked thermodynamic openness of autopoietic systems can be described as a continuous change within a struggle for the re-affirmation of an invariant form. Such relationship between autopoietic agents and the environment (enaction) is what characterizes, in Varela and Maturana's view, the minimal form of cognition, as synthesized by the formula “living is sense-making” (Varela et al., 1991).
Our contribution to this view focuses on the examination of what enables the organism to make sense of the environment (however unconsciously). We propose that an embodied analog of Kant's a priori structures may be at work. This change of accent, within the same perspective, is based on an extension of the notion of the Kantian transcendental consisting in rooting an a priori formal structure at the biological level. We acknowledge here a strong affinity with Thompson (2004), who links intentionality as a self-organizing openness to the world with biology, arguing that autopoiesis is “the minimal form this type of self-organization can take” (Thompson, 2007, pp. 157–165). This sentence contains indeed, in a nutshell, a formulation of an embodiment of the transcendental similar to ours, with an explicit reference to dynamic systems theory (Thompson, 2007, p. 27). However, Thompson's claim that experience is “irreducible” due to its “ineliminable transcendental character”(Thompson, 2004) seems to favor a usage of the transcendental in a purely-phenomenological way: the transcendental is our own lived experience, which alone renders an epistemology of living organisms possible (Thompson, 2007, pp. 162–165). Our analysis of the autopoietic analogs of Kantian categories, on the other hand, aspires to trace the “ineliminable transcendental character” of phenomenology within biology (and the brain) itself. In order to clarify this important point, we discuss briefly some relevant issues highlighted by Thompson (2007).
Autopoiesis, life, and cognition: one and the same? . . . ."
The embodied transcendental: a Kantian perspective on neurophenomenology