S
smcder
Guest
Resonates with how I am coming to understand HCT
Stability: how life began and why it can’t rest – Addy Pross – Aeon
The first part reminds me of how consciousness is often discussed:
"... there seems to be a chasm between the animate and inanimate realms.
I believe that it is now possible to bridge that gap. But before I explain how, it is worth mentioning how modern biology has generally dealt with it. Bluntly, it has dropped the problem into the ‘too hard’ basket and looked the other way. This has meant fencing off biology from physics and chemistry, and developing a separate philosophy of science. One of the leading evolutionary biologists of the 20th century, Ernst Mayr, openly argued for the ‘autonomy of biology’. Physics and chemistry deal with inanimate matter, he insisted, biology deals with living systems, and, at least for the time being, that’s that."
Then, the HCTish part:
The second insight is even more momentous. Evolution exhibits an identifiable driving force, a direction if you like, and this ‘teleological’ tendency acts at both the chemical and biological stages; that is, it operates both during, as well as after, what we think of as abiogenesis. Thus the purpose-driven character of life, the very thing that seemed to distinguish biology from the rest of nature, turns out not to be unique to life after all. Its beginnings are already discernible in certain inanimate systems, provided they are replicative and able to evolve. And this driving force can be described in strictly physical terms.
Put simply, it is nature’s drive towards greater stability – a drive that is as ubiquitous in physics as it is in biology.
...
We talk a lot about stability both in science and in everyday life. It means pretty much the same thing in either context: long-lasting, persistent, unchanging over time. And true to the prediction of our little logical truism above, there is indeed a law of physics and chemistry that says that things, in general, become more stable over time.
I’m talking about the Second Law of Thermodynamics, one of the most famous laws in all of science.
Stability: how life began and why it can’t rest – Addy Pross – Aeon
The first part reminds me of how consciousness is often discussed:
"... there seems to be a chasm between the animate and inanimate realms.
I believe that it is now possible to bridge that gap. But before I explain how, it is worth mentioning how modern biology has generally dealt with it. Bluntly, it has dropped the problem into the ‘too hard’ basket and looked the other way. This has meant fencing off biology from physics and chemistry, and developing a separate philosophy of science. One of the leading evolutionary biologists of the 20th century, Ernst Mayr, openly argued for the ‘autonomy of biology’. Physics and chemistry deal with inanimate matter, he insisted, biology deals with living systems, and, at least for the time being, that’s that."
Then, the HCTish part:
The second insight is even more momentous. Evolution exhibits an identifiable driving force, a direction if you like, and this ‘teleological’ tendency acts at both the chemical and biological stages; that is, it operates both during, as well as after, what we think of as abiogenesis. Thus the purpose-driven character of life, the very thing that seemed to distinguish biology from the rest of nature, turns out not to be unique to life after all. Its beginnings are already discernible in certain inanimate systems, provided they are replicative and able to evolve. And this driving force can be described in strictly physical terms.
Put simply, it is nature’s drive towards greater stability – a drive that is as ubiquitous in physics as it is in biology.
...
We talk a lot about stability both in science and in everyday life. It means pretty much the same thing in either context: long-lasting, persistent, unchanging over time. And true to the prediction of our little logical truism above, there is indeed a law of physics and chemistry that says that things, in general, become more stable over time.
I’m talking about the Second Law of Thermodynamics, one of the most famous laws in all of science.