I've been showing anomolies to 'the science' here for days. 'The science' is flawed. You actually have to look at the fucking data to see this, look at the computer code, look at the trend lines, look at how they fudged the data. If you rely on news reports you can't possibly know anything about 'the science.' These guys have been hiding behind their status as 'scientists' and covering up flawed research.
Originally from Anthony Watts Watts Up With That?
Good example of the urban heat island issue.
Guest Post by Willis Eschenbach
I got to thinking about the (non) adjustment of the GISS temperature data for the Urban Heat Island effect, and it reminded me that I had once looked briefly at Anchorage, Alaska in that regard. So I thought I’d take a fresh look. I used the GISS (NASA) temperature data available
here.
Given my experience with the
Darwin, Australia records, I looked at the “homogenization adjustment”. According to
GISS:
The goal of the homogenization effort is to avoid any impact (warming or cooling) of the changing environment that some stations experienced by changing the long term trend of any non-rural station to match the long term trend of their rural neighbors, while retaining the short term monthly and annual variations.
Here’s how the Anchorage data has been homogenized. Figure 1 shows the difference between the Anchorage data before and after homogenization:
Figure 1. Homogenization adjustments made by GISS to the Anchorage, Alaska urban temperature record (red stepped line, left scale) and Anchorage population (orange curve, right scale)
Now, I suppose that this is vaguely reasonable. At least it is in the right direction, reducing the apparent warming. I say “vaguely reasonable” because this adjustment is supposed to take care of “UHI”, the Urban Heat Island effect. As most everyone has experienced driving into any city, the city is usually warmer than the surrounding countryside. UHI is the result of increasing population, with the accompanying changes around the temperature station. More buildings, more roads, more cars, more parking lots, all of these raise the temperature, forming a heat “island” around the city. The larger the population of the city, the greater the UHI.
But here’s the problem. As Fig. 1 shows, until World War II, Anchorage was a very sleepy village of a few thousand. Since then the population has skyrocketed. But the homogeneity adjustment does not match this in any sense. The homogeneity adjustment is a straight line (albeit one with steps …why steps? … but I digress). The adjustment starts way back in 1926 … why would the 1926 Anchorage temperature need any adjustment at all? And how does this adjust for UHI?
Intrigued by this oddity, I looked at the nearest rural station, which is Matanuska. It is only about 35 miles (60 km) from Anchorage, as shown in Figure 2.
Figure 2. Anchorage (urban) and Matanuska (rural) temperature stations.
Matanuska is clearly in the same climatological zone as Anchorage. This is verified by the correlation between the two records, which is about 0.9. So it would be one of the nearby rural stations used to homogenize Anchorage.
Now, according to GISS the homogeneity adjustments are designed to adjust the urban stations like Anchorage so that they more closely match the rural stations like Matanuska. Imagine my surprise when I calculated the homogeneity adjustment to Matanuska, shown in Figure 3.
Figure 3. Homogenization adjustments made by GISS to the Matanuska, Alaska rural temperature record.
Say what? What could possibly justify that kind of adjustment, seven tenths of a degree? The early part of the record is adjusted to show less warming. Then from 1973 to 1989, Matanuska is adjusted to warm at a feverish rate of 4.4 degrees per century … but Matanuska is a RURAL station. Since GISS says that the homogenization effort is designed to change the ”long term trend of any non-rural station to match the long term trend of their rural neighbors”, why is Matanuska being adjusted at all?
Not sure what I can say about that, except that I don’t understand it in the slightest. My guess is that what has happened is that a faulty computer program has been applied to fudge the record of every temperature station on the planet. The results have then been used without the slightest attempt at quality control.
Yes, I know it’s a big job to look at thousands of stations to see what the computer program has done to each and every one of them … but if you are not willing to make sure that your hotrod whizbang computer program actually works for each and every station, you should not be in charge of homogenizing milk, much less temperatures.
The justification that is always given for these adjustments is that they must be right because the global average of the GISS adjusted dataset (roughly) matches the GHCN adjusted dataset, which (roughly) matches the CRU adjusted dataset.
Sorry, I don’t find that convincing in the slightest. All three have been shown to have errors. All that shows is that their errors roughly match, which is meaningless. We need to throw all of these “adjusted datasets” in the trash can and start over.
As the Romans used to say “falsus in unum, falsus in omnibus”, which means “false in one thing, false in everything”. Do we know that everything is false? Absolutely not … but given egregious oddities like this one, we have absolutely no reason to believe that they are true either.
Since people are asking us to bet billions on this dataset, we need more than a “well, it’s kinda like the other datasets that contain known errors” to justify their calculations. NASA is not doing the job we are paying them to do. Why should citizen scientists like myself have to dig out these oddities? The adjustments for each station should be published and graphed. Every single change in the data should be explained and justified. The computer code should be published and verified.
Until they get off their dead … … armchairs and do the work they are paid to do, we can place no credence in their claims of temperature changes. They may be right … but given their egregious errors, we have no reason to believe that, and certainly no reason to spend billions of dollars based on their claims.