A further extract from that paper:
"Assumption 5 is pancomputationalism: everything is computational. There are two ways to defend assumption 5. Some authors argue that everything is computational because describing something as computational is just one way of interpreting it, and everything can be interpreted that way [19, 23]. We reject this interpretational pancomputationalism because it conflates computational modeling with computational explanation. The computational theory of cognition is not limited to the claim that cognition can be described (modeled) computationally, as the weather can; it adds that cognitive phenomena have a computational explanation [28, 31, 34]. Other authors defend assumption 5 by arguing that the universe as a whole is at bottom computational [56, 57]. The latter is a working hypothesis or article of faith for those interested in seeing how familiar physical laws might emerge from a “computational” or “informational” substrate. It is not a widely accepted notion, and there is no direct evidence for it.
The physical form of pancomputationalism is not directly relevant to theories of cognition because theories of cognition attempt to find out what distinguishes cognition from other processes—not what it shares with everything else. Insofar as the theory of cognition uses computation to distinguish cognition from other processes, it needs a notion of computation that excludes at least some other processes as noncomputational (cf. [28, 31, 34]). . . . .
We agree that if cognition involves computation, then the job of neuroscience and psychology is to discover which specific computations cognition involves. But the if is important. The job of psychology and neuroscience is to find out how cognition works, regardless of whether it involves computation. The claim that brains compute was introduced in neuroscience and psychology as an empirical hypothesis to explain cognition by analogy with digital computers. Much of the empirical import of the computational theory of cognition is already eliminated by stretching the notion of computation from digital to generic (see below). Stretching the notion of computation even further, so as to embrace pancomputationalism, erases all empirical import from the claim that brains compute."
"Assumption 5 is pancomputationalism: everything is computational. There are two ways to defend assumption 5. Some authors argue that everything is computational because describing something as computational is just one way of interpreting it, and everything can be interpreted that way [19, 23]. We reject this interpretational pancomputationalism because it conflates computational modeling with computational explanation. The computational theory of cognition is not limited to the claim that cognition can be described (modeled) computationally, as the weather can; it adds that cognitive phenomena have a computational explanation [28, 31, 34]. Other authors defend assumption 5 by arguing that the universe as a whole is at bottom computational [56, 57]. The latter is a working hypothesis or article of faith for those interested in seeing how familiar physical laws might emerge from a “computational” or “informational” substrate. It is not a widely accepted notion, and there is no direct evidence for it.
The physical form of pancomputationalism is not directly relevant to theories of cognition because theories of cognition attempt to find out what distinguishes cognition from other processes—not what it shares with everything else. Insofar as the theory of cognition uses computation to distinguish cognition from other processes, it needs a notion of computation that excludes at least some other processes as noncomputational (cf. [28, 31, 34]). . . . .
We agree that if cognition involves computation, then the job of neuroscience and psychology is to discover which specific computations cognition involves. But the if is important. The job of psychology and neuroscience is to find out how cognition works, regardless of whether it involves computation. The claim that brains compute was introduced in neuroscience and psychology as an empirical hypothesis to explain cognition by analogy with digital computers. Much of the empirical import of the computational theory of cognition is already eliminated by stretching the notion of computation from digital to generic (see below). Stretching the notion of computation even further, so as to embrace pancomputationalism, erases all empirical import from the claim that brains compute."
Last edited: